22 research outputs found

    Polysaccharide Nanoparticles from Isatis indigotica Fort. Root Decoction: Diversity, Cytotoxicity, and Antiviral Activity

    No full text
    It has been revealed that numerous nanoparticles are formed during the boiling preparation of traditional Chinese medical decoctions and culinary soups. They may possess physiological effects different from those of constituent components and are worth paying attention to but are barely noticed and investigated as of yet. In this study, six groups of nanoparticles, whose size ranged from 57 to 300 nm, were successfully isolated from the decoction of Isatis indigotica Fort. root, according to their particle size by the means of size-exclusive chromatography. All of the obtained nanoparticles have a high content of polysaccharides, which distinguishes them from the disclosed BLG protein nanoparticles. They also have high similarities in other compositions, surface charge, and stimuli responses. However, four out of these six nanoparticles (F2, F3, F4, and F5) exhibited significant antiviral activity against influenza virus H1N1, and their antiviral activities and cytotoxicity towards MDCK cells varied with their sizes. It suggested that the antiviral efficacy of BLG decoction could also be from its nanoparticles besides its well-known antiviral phytochemicals. It also implied that the biological effects of these polysaccharide nanoparticles, including cytotoxicity and antiviral activity, may be correlative with the physicochemical properties, especially the particle size

    Influence of Surface Ultrasonic Rolling on Microstructure and Corrosion Property of T4003 Ferritic Stainless Steel Welded Joint

    No full text
    In this paper, the effect of surface ultrasonic rolling treatment (SURT) on surface properties of T4003 cold metal transfer (CMT) welded joints was studied. Surface topography and microstructure changes of the welded joint surface before and after SURT were observed by optical microscope and scanning electron microscope. The hardness and residual stress distribution of welded joint were measured by a microhardness tester and X-ray diffractometer. The change of corrosion resistance of welded joints was studied by electrochemical polarization curve measurement. The results show that surface roughness (Ra) of the weld zone, heat affect zone (HAZ), and base metal after SURT was reduced to 0.320 μm, 0.156 μm, and 0.227 μm, respectively, and surface morphology became smooth. The plastic deformation layer and working hardening layer were formed at the welded joint. The degree of plastic deformation of the weld zone was more serious than that in the base metal, and grains in weld zone was obviously refined. The thickness of plastic deformation layer was about 100 μm. The surface hardness in the weld zone was highest, which is about 420 HV. The refinement of grains and the increase of surface hardness can improve the fatigue life of welded joint. After SURT, the residual stress in the welded joint changes from residual tensile stress to residual compressive stress, which can also improve fatigue life of the welded joint. Surface corrosion resistance of welded joints after SURT was improved due to smooth surface and the formation of fine grains layer

    Antidiabetic Micro-/Nanoaggregates from Ge-Gen-Qin-Lian-Tang Decoction Increase Absorption of Baicalin and Cellular Antioxidant Activity In Vitro

    Get PDF
    The antidiabetic effects of Ge-Gen-Qin-Lian-Tang decoction (GQD) have been proven clinically. In a pharmacological study conducted on STZ-induced diabetic rats, the constitutive aggregates/sediments of Ge-Gen-Qin-Lian-Tang decoction exhibited stronger hypoglycemic and antioxidant activities compared to the soluble compositions. This study aims to demonstrate the pharmacological properties of aggregates derived from GQD by measuring permeability of the active monomer phytochemicals (e.g., baicalin) in a Caco-2 cell monolayer and determine the cellular viability, intracellular redox status (MDA and SOD), and insulin secretion of pancreatic β-cell line, INS-1, following STZ-induced oxidative stress. The aggregates were separated into three fractions, namely, “MA (microaggregates),” “400 g supernatant,” and “MNA (micro-/nanoaggregates),” by centrifugation at 400 ×g and 15000 ×g, respectively. Aggregates in the sediment increased baicalin absorption, showed little toxicity to β-cells, elevated intracellular SOD levels, and significantly suppressed oxidative damage effects on cellular viability and functions. The “MA” fraction had a larger particle size and provided higher antioxidant cellular protection than “MNA” in vitro, implying that the sediments may be the active components in the herbal decoction. The actions of these micro-/nanoaggregates may provide a new perspective for understanding the antidiabetic effects of herbal decoctions and aid in interpretation of synergistic actions between the multiple components

    Polysaccharide Nanoparticles from <i>Isatis indigotica</i> Fort. Root Decoction: Diversity, Cytotoxicity, and Antiviral Activity

    No full text
    It has been revealed that numerous nanoparticles are formed during the boiling preparation of traditional Chinese medical decoctions and culinary soups. They may possess physiological effects different from those of constituent components and are worth paying attention to but are barely noticed and investigated as of yet. In this study, six groups of nanoparticles, whose size ranged from 57 to 300 nm, were successfully isolated from the decoction of Isatis indigotica Fort. root, according to their particle size by the means of size-exclusive chromatography. All of the obtained nanoparticles have a high content of polysaccharides, which distinguishes them from the disclosed BLG protein nanoparticles. They also have high similarities in other compositions, surface charge, and stimuli responses. However, four out of these six nanoparticles (F2, F3, F4, and F5) exhibited significant antiviral activity against influenza virus H1N1, and their antiviral activities and cytotoxicity towards MDCK cells varied with their sizes. It suggested that the antiviral efficacy of BLG decoction could also be from its nanoparticles besides its well-known antiviral phytochemicals. It also implied that the biological effects of these polysaccharide nanoparticles, including cytotoxicity and antiviral activity, may be correlative with the physicochemical properties, especially the particle size

    Nanoparticles Isolated From Porcine Bone Soup Ameliorated Dextran Sulfate Sodium-Induced Colitis and Regulated Gut Microbiota in Mice

    Get PDF
    Daily foods contain a great number of self-assembled nanoparticles (NPs) which were incidentally produced during food processing. These food incidental NPs can directly access the human gastrointestinal tract in high frequency and large quantities. Limited reports were focused on whether and how these food incidental NPs affected the gastrointestinal tissues and gut microbiota. In the present study, bone soup and its NPs both significantly ameliorated colitis symptoms in dextran sulfate sodium (DSS)-induced mice and inhibited the release of pro-inflammatory cytokines. They also restored intestinal microbiota dysbiosis by improving the diversity and richness of intestinal microbiota and regulating community composition, such as a remarkable increase in Muribaculaceae, Alistipes, and Alloprevotella, and a decrease in Helicobacter. Moreover, the correlation analysis showed that pro-inflammatory cytokines were negatively correlated with Muribaculaceae, Alloprevotella, and Alistipes, but positively correlated with Helicobacter. These findings suggest that the food incidental NPs can influence human health through regulating the inflammation of the gastrointestinal tissues and the gut microbiota

    Nanoparticles derived from porcine bone soup attenuate oxidative stress-induced intestinal barrier injury in Caco-2 cell monolayer model

    No full text
    Safety concerns arose on the interaction between nanoparticles in food and intestinal tract. Food components could spontaneously assemble into a large number of nanoparticles during food processing. These nanoparticles may possess physiological effects differed from those of constituent components, are worth paying attention to, but are barely investigated yet, especially on their interaction with intestinal tract. Porcine bone soup is rich in nanoparticles, which can directly interact with oral macrophages disclosed by our previous study. In this study, the effects of bone soup nanoparticles on intestinal barrier function were subsequently evaluated on Caco-2 cell monolayers. The results revealed the nanoparticles did not develop but restore intestinal barrier dysfunction compared with engineered nanoparticles, indicated by barrier integrity, sodium fluorescein permeability, tight junctions and adherent junctions related proteins. These results showed the potential of bone soup nanoparticles on improving intestinal disorders, which resonated with traditional knowledge on the efficacies of bone soup
    corecore